Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(4): 57, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565676

RESUMO

Both livestock-manure and livestock-manure-derived biochar have been used to remediate heavy metal-contaminated soil. However, direct comparisons of the heavy metal stabilization efficiency of livestock-manure and EQC-manure-biochar (derived from an equal quantity of corresponding livestock-manure) are limited. In the present study, the effect of livestock-manures and EQC-manure-biochars on soil properties and heavy metal bioavailability and leachability were compared using two contrasting soils (Ferralsols and Fluvisols). The results showed that both the livestock-manures and EQC-manure-biochars significantly changed soil pH, available phosphorus, available potassium, alkaline nitrogen and organic matter content (p < 0.05), but the trends were variable. In Ferralsols, the DTPA-extractable Cd and Zn decreased by -0.38%~5.70% and - 3.79%~9.98% with livestock-manure application and by -7.99%~7.23% and - 5.67%~7.17% with EQC-manure-biochars application. In Fluvisols, the DTPA-extractable Cd and Zn decreased by 13.39%~17.41% and - 45.26%~14.24% with livestock-manure application and by 10.76%~16.90% and - 36.38%~16.37% with EQC-manure-biochar application. Furthermore, the change in TCLP-extractable Cd and Zn in both soils was similar to that of DTPA-extractable Cd and Zn. Notably, the Cd and Zn stabilization efficiency of the EQC-manure-biochars was no better than that of the corresponding livestock-manures. These results suggest that the use of livestock-manure-derived biochar is not cost-effective for the remediation of heavy metal-contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Cádmio/química , Zinco , Esterco , Gado , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Ácido Pentético
2.
Opt Express ; 31(11): 17782-17791, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381503

RESUMO

Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.

3.
Phys Rev Lett ; 130(6): 060802, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827576

RESUMO

Boson sampling is a computational problem, which is commonly believed to be a representative paradigm for attaining the milestone of quantum advantage. So far, massive efforts have been made to the experimental large-scale boson sampling for demonstrating this milestone, while further applications of the machines remain a largely unexplored area. Here, we investigate experimentally the efficiency and security of a cryptographic one-way function that relies on coarse-grained boson sampling, in the framework of a photonic boson-sampling machine fabricated by a femtosecond laser direct writing technique. Our findings demonstrate that the implementation of the function requires moderate sample sizes, which can be over 4 orders of magnitude smaller than the ones predicted by the Chernoff bound; whereas for numbers of photons n≥3 and bins d∼poly(m,n), the same output of the function cannot be generated by nonboson samplers. Our Letter is the first experimental study that deals with the potential applications of boson sampling in the field of cryptography and paves the way toward additional studies in this direction.

4.
Opt Express ; 30(18): 32887-32894, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242341

RESUMO

Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36231659

RESUMO

Mining activities are one of the main contamination sources of Cd in soil. However, the information about the influence of silver mining on Cd pollution in soil in mining-affected areas is limited. In the present study, sixteen paired soil and rice grain samples were collected from the farmland along the Luxi River nearby a silver mine in Yingtan City, Jiangxi Province, China. The total, bioavailable, and fraction of Cd in soil and Cd content in rice grain were determined by inductively coupled plasma mass spectrometry. The transformation of Cd in the soil-rice system and potential health risk via consumption of these rice grains were also estimated. The results showed that Cd concentration in these paddy soils ranged from 0.21 to 0.48 mg/kg, with the mean Cd concentration (0.36 mg/kg) exceeded the national limitation of China (0.3 mg/kg, GB 15618-2018). Fortunately, all these contaminated paddy soils were just slightly polluted, with the highest single-factor pollution index value of 1.59. The DTPA- and CaCl2-extractable Cd in these paddy soils ranged from 0.16 to 0.22 mg/kg and 0.06 to 0.11 mg/kg, respectively, and the acid-soluble Cd occupied 40.40% to 52.04% of the total Cd, which was the highest among different fractions. The concentration of Cd in rice grain ranged from 0.03 to 0.39 mg/kg, and the mean Cd concentration in rice grain (0.16 mg/kg) was within the national limitation of China (0.2 mg/kg, GB 2762-2017). The bioaccumulation factor of Cd in rice grain ranged from 0.09 to 1.18, and its correlation with various indicators was nonsignificant (p < 0.05). Health risk assessment indicated that the noncarcinogenic risk for local rice consumers was within the acceptable range, but the carcinogenic risk (CR) was ranging from 1.24 × 10-2 to 1.09 × 10-3 and higher than the acceptable range (1.0 × 10-4), indicating that the local rice consumers suffered serious risk for carcinogenic diseases. The results of the present study can provide reference for safety production of rice in silver mining-affected areas.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cloreto de Cálcio , China , Grão Comestível/química , Oryza/química , Ácido Pentético , Medição de Risco , Prata/análise , Solo/química , Poluentes do Solo/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-36141868

RESUMO

The high salt-alkalinity of bauxite residue (BR) hinders plant growth and revegetation of bauxite residue disposal areas (BRDA), which cause serious potential environmental and ecological risks. Bioneutralization is a promising method for improving the properties of BR and plant colonization. In the present study, a strong saline-alkali tolerant bacteria (ZH-1) was isolated from aged BR and identified as Bacillus sp. The medium of ZH-1 was optimized by orthogonal tests, and ZH-1 could decrease the medium pH from 11.8 to 6.01 (agitated culture) and 6.48 (static culture) by secretion of citric acid, oxalic acid and tartaric acid. With the inoculation of ZH-1, the pH of BR decreased from 11.6 to 8.76, and the water-soluble salt in BR increased by 68.11%. ZH-1 also changed the aggregate size distribution of BR, the mechanical-stable aggregates and water-stable aggregates increased by 18.76% and 10.83%, respectively. At the same time, the stability of the aggregates obviously increased and the destruction rate decreased from 94.37% to 73.46%. In addition, the microbial biomass carbon increased from 425 to 2794 mg/kg with the inoculation of ZH-1. Bacterial community analysis revealed that Clostridia, Bacilli, Gammaproteobacteria, Betaproteobacteria and Alphaproteobacteria were the main classes in the naturalized BR, and the inoculation of ZH-1 increased the diversity of bacteria in the BR. Overall, ZH-1 has great potential for neutralization and improvement the properties of BR and may be greatly beneficial for the revegetation of BRDA.


Assuntos
Álcalis , Óxido de Alumínio , Óxido de Alumínio/química , Bactérias , Carbono , Ácido Oxálico , Plantas , Solo/química , Água
7.
Toxics ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35736924

RESUMO

As an eco-friendly and efficient adsorbent for removal of potential toxic metals from aqueous solution, biochar has received widespread attention. In the present study, wheat straw biochar (BC) and corresponding modified biochar (HNC) were used to remove Cu2+, Cd2+ and Pb2+ from an aqueous solution. The influence of the environment factors on metals adsorption and adsorption mechanism were discussed in detail. The results showed that the HNC had porous structures and owned ample functional groups (-OH, -COOH and C-N groups) compared with the BC. In the single system, the adsorption capacities of HNC for Cu2+, Cd2+ and Pb2+ at a pH of 5.5 were 18.36, 22.83 and 49.38 mg/g, which were 76.89%, 164.36% and 22.75% higher than that of the BC, respectively. In addition, the adsorption process of Cu2+ and Cd2+ on BC and HNC fitted to the Langmuir isotherm model and pseudo-second-order kinetics, but the adsorption of Pb2+ on BC and HNC fitted to the Langmuir isotherm model and pseudo-first-order kinetics. Adsorption isotherms indicated that the adsorption of Cu2+, Cd2+ and Pb2+ by BC and HNC was a spontaneous endothermic process. The competitive adsorption of mixed metal ions (Cu2+, Cd2+ and Pb2+) revealed that HNC was more preferential to adsorb Cu2+ compared with Cd2+ and Pb2+. Furthermore, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that the main adsorption mechanisms were surface complexation and precipitation, and the adsorbed Cu2+, Cd2+ and Pb2+ on HNC mainly exist as CuO, Cd(OH)2, Pb3O4 and Pb(OH)2.

8.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335164

RESUMO

In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35270219

RESUMO

To understand the influence of Pb/Zn smelter on surrounding environment, 110 soil and 62 wheat grain samples (62 paired samples) were collected nearby a Pb/Zn smelter in Jiaozuo City, Henan Province, China. The content and spatial distribution of metal(loid)s in the soil-wheat system, and the potential health risk via consumption of wheat grains were determined. Results showed that the average content of Pb, Cd, As, Cu, Zn, and Ni in soil were 129.16, 4.28, 17.95, 20.43, 79.36, and 9.42 mg/kg, respectively. The content of Cd in almost all soil samples (99.1%) exceeded the national limitation of China (0.6 mg/kg). Spatial distribution analysis indicated that atmospheric deposition might be the main pollution source of Pb, Cd, As, and Zn in soil. In addition, the average content of Pb, Cd, As, Cu, Zn, and Ni in wheat grain were 0.62, 0.35, 0.10, 3.7, 35.77, and 0.15 mg/kg, respectively, with the average Pb and Cd content exceeding the national limitation of China. The average bioaccumulation factor of these metal(loid)s followed the following order: Zn (0.507) > Cu (0.239) > Cd (0.134) > Ni (0.024) > Pb (0.007) > As (0.006). Health risk assessment indicated that the average noncarcinogenic risk of children (6.78) was much higher than that of adults (2.83), and the carcinogenic risk of almost all wheat grain is higher than the acceptable range, with an average value of 2.43 × 10−2. These results indicated that humans who regularly consume these wheat grains might have a serious risk of noncarcinogenic and carcinogenic diseases.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Cádmio/análise , Criança , China , Grão Comestível/química , Monitoramento Ambiental , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Triticum , Zinco/análise
10.
Sci Total Environ ; 806(Pt 2): 150646, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600987

RESUMO

The accumulation of heavy metals in soil may introduce them to the food chain and cause health risks for humans. In the present study, 43 pairs of soil and grape samples (leaf and fruit) were collected form vineyards in the suburbs of Kaifeng city (wastewater-irrigated area in Henan Province, China) to assess the heavy metal (Pb, Cd, Cu, Zn and Ni) pollution level in soil, heavy metal accumulation in different grape tissues and the potential health risk via consumption of grapes. The results showed that the average contents of Pb, Cd, Cu, Zn and Ni in vineyard soil were 42.27, 3.08, 62.33, 262.54 and 26.60 mg/kg, respectively. Some of these soil samples were severely contaminated with Cd and Zn, with an average pollution index (Pi) of 5.14 and 0.88, respectively. Most of these soil samples were severely polluted by heavy metals, with an average Nemerow integrated pollution index (PN) of 3.77. The bioavailable heavy metals were negatively correlated with soil pH and positively correlated with soil organic matter (OM). In addition, heavy metals were more likely to accumulate in grape leaves, and their contents in grape pulp were all within the maximum permissible limit set by China (GB 2762-2017). The average bioaccumulation factors (BFs) of Pb, Cd, Cu, Zn and Ni in grape pulp were 0.007, 0.096, 0.160, 0.078 and 0.023, respectively. Health risk assessment indicated that there was no noncarcinogenic risk for grape consumers (adults and children). However, the carcinogenic risk (CR) ranged from 4.95 × 10-7 to 2.17 × 10-4, and the CR value of three grape samples was higher than 10-4, indicating that a probability of carcinogenic disease existed for humans who regularly consumed the grapes from this region.


Assuntos
Metais Pesados , Poluentes do Solo , Vitis , Adulto , Criança , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
11.
Phys Rev Lett ; 127(14): 147401, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652196

RESUMO

Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.

12.
Light Sci Appl ; 10(1): 173, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462419

RESUMO

Higher-order topological insulators, as newly found non-trivial materials and structures, possess topological phases beyond the conventional bulk-boundary correspondence. In previous studies, in-gap boundary states such as the corner states were regarded as conclusive evidence for the emergence of higher-order topological insulators. Here, we present an experimental observation of a photonic higher-order topological insulator with corner states embedded into the bulk spectrum, denoted as the higher-order topological bound states in the continuum. Especially, we propose and experimentally demonstrate a new way to identify topological corner states by exciting them separately from the bulk states with photonic quantum superposition states. Our results extend the topological bound states in the continuum into higher-order cases, providing an unprecedented mechanism to achieve robust and localized states in a bulk spectrum. More importantly, our experiments exhibit the advantage of using the time evolution of quantum superposition states to identify topological corner modes, which may shed light on future exploration between quantum dynamics and higher-order topological photonics.

13.
Opt Lett ; 46(7): 1584-1587, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793493

RESUMO

The inevitable noise and decoherence in the quantum circuit hinder its scalable development, so quantum error correction and quantumness protection for multiple controllable qubits system are necessary. The flatband in the dispersion relation, based on its inherent locality and high degenerate energy band structure, shows non-diffractive transport properties in the line spectrum and has the potential possibility to protect quantum resources in special lattices. The pioneer work has proved that the topologically boundary state is robust to protect the quantumness from disorder and perturbation, which inspires that quantumness can be protected anywhere in a periodic structure, including the boundary state and bulk state. Here, we show the topological protection of quantum resources with different state combinations in a sawtooth lattice. Photons can be localized at any degenerate eigenmode, and the localized effect is determined by only one parameter, without additional modulations. We show a high violation of Cauchy-Schwarz inequality up to 35 standard deviations by measuring cross correlation and auto-correlation of correlated photons. We verify that the topological protection is robust to different wavelengths of correlated photons. Our results suggest an alternative way of exploring topological protection in flatband and bulk state, demonstrating the powerful ability of topological photonics to protect quantum resources.

14.
Phys Rev Lett ; 124(15): 153601, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357035

RESUMO

Vector vortex beams simultaneously carrying spin and orbital angular momentum of light promise additional degrees of freedom for modern optics and emerging resources for both classical and quantum information technologies. The inherently infinite dimensions can be exploited to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build quantum computing machines in high-dimensional Hilbert space. So far, much progress has been made in the emission of vector vortex beams from a chip surface into free space; however, the generation of vector vortex beams inside a photonic chip has not been realized yet. Here, we demonstrate the first vector vortex beam emitter embedded in a photonic chip by using femtosecond laser direct writing. We achieve a conversion of vector vortex beams with an efficiency up to 30% and scalar vortex beams with an efficiency up to 74% from Gaussian beams. We also present an expanded coupled-mode model for understanding the mode conversion and the influence of the imperfection in fabrication. The fashion of embedded generation makes vector vortex beams directly ready for further transmission, manipulation, and emission without any additional interconnection. Together with the ability to be integrated as an array, our results may enable vector vortex beams to become accessible inside a photonic chip for high-capacity communication and high-dimensional quantum information processing.

15.
Soft Matter ; 16(12): 3096-3105, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32149313

RESUMO

Inertial focusing of particles in serpentine microfluidic chips has been studied over the past decade. Here, a study to investigate the particle inertial focusing in 3D-printed serpentine microfluidic chips was conducted by simulation and practice. A test model was designed and printed using four commercial 3D-printers. Commercial inkjet 3D-printers have shown the best printing channel resolution of up to 0.1 mm. The force analysis of particle inertial focusing in 3D-printed microfluidic chips with large cross-sectional channels was discussed. Important parameters such as the channel curvature and flow velocity were studied by simulation. The optimal channel curvature and flow velocity are 5.9 mm and 480 µL min-1 (Re: 29.8 and De: 4.49) in the 3D-printed microfluidic chips with 0.2 mm × 0.4 mm cross-sectional channels. Under these optimal conditions, particles were well focused in the middle of the channel. Furthermore, two kinds of cancer cells were focused in these 3D-printed serpentine microfluidic chips under the optimal conditions. We envision that this improved study would provide helpful insights into simulating particle inertial focusing in 3D-printed microfluidic chips and promoting 3D-printed microfluidic chips to commercial production.

16.
Sci Adv ; 6(5): eaay5853, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32064352

RESUMO

The subset sum problem (SSP) is a typical nondeterministic-polynomial-time (NP)-complete problem that is hard to solve efficiently in time with conventional computers. Photons have the unique features of high propagation speed, strong robustness, and low detectable energy level and therefore can be promising candidates to meet the challenge. Here, we present a scalable chip built-in photonic computer to efficiently solve the SSP. We map the problem into a three-dimensional waveguide network through a femtosecond laser direct writing technique. We show that the photons sufficiently dissipate into the networks and search for solutions in parallel. In the case of successive primes, our approach exhibits a dominant superiority in time consumption even compared with supercomputers. Our results confirm the ability of light to realize computations intractable for conventional computers, and suggest the SSP as a good benchmarking platform for the race between photonic and conventional computers on the way toward "photonic supremacy."

17.
Sci Bull (Beijing) ; 65(4): 286-292, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36659093

RESUMO

Quantum process tomography is often used to completely characterize an unknown quantum process. However, it may lead to an unphysical process matrix, which will cause the loss of information with respect to the tomography result. Convex optimization, widely used in machine learning, is able to generate a global optimum that best fits the raw data while keeping the process tomography in a legitimate region. Only by correctly revealing the original action of the process can we seek deeper into its properties like its phase transition and its Hamiltonian. Here, we reconstruct the seawater channel using convex optimization and further test it on the seven fundamental gates. We compare our method to the standard-inversion and norm-optimization approaches using the cost function value and our proposed state deviation. The advantages convince that our method enables a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources. In addition, we examine on a set of non-unitary channels and the reconstructions reach up to 99.5% accuracy. Our method offers a more universal tool for further analyses on the components of the quantum channels and we believe that the crossover between quantum process tomography and convex optimization may help us move forward to machine learning of quantum channels.

18.
Adv Mater ; 31(49): e1905624, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31613398

RESUMO

Topological phases play a novel and fundamental role in matter and display extraordinary robustness to smooth changes in material parameters or disorder. A crossover between topological material and quantum information may lead to inherent fault-tolerant quantum simulations and quantum computing. Quantum features may be preserved by being encoded among topological structures of physical evolution systems. This requires stimulation, manipulation, and observation of topological phenomena at the single quantum particle level, which has not, however, yet been realized. It is asked whether the quantum features of single photons can be preserved in topological structures. The boundary states are experimentally observed at the genuine single-photon level and the performance of the topological phase is demonstrated to protect the quantum features against diffusion-induced decoherence in coupled waveguides and noise decoherence from the ambient environment. Compatibility between macroscopic topological states and microscopic single photons in the ambient environment is thus confirmed, leading to a new avenue to "quantum topological photonics" and providing more new possibilities for quantum materials and quantum technologies.

19.
Phys Rev Lett ; 122(1): 013903, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012669

RESUMO

The gaps separating two different states widely exist in various physical systems: from the electrons in periodic lattices to the analogs in photonic, phononic, plasmonic systems, and even quasicrystals. Recently, a thermalization gap, an inaccessible range of photon statistics, was proposed for light in disordered structures [Nat. Phys. 11, 930 (2015)NPAHAX1745-247310.1038/nphys3482], which is intrinsically induced by the disorder-immune chiral symmetry and can be reflected by the photon statistics. The lattice topology was further identified as a decisive role in determining the photon statistics when the chiral symmetry is satisfied. Being very distinct from one-dimensional lattices, the photon statistics in ring lattices are dictated by its parity, i.e., odd or even sited. Here, we for the first time experimentally observe a parity-induced thermalization gap in strongly disordered ring photonic structures. In a limited scale, though the light tends to be localized, we are still able to find clear evidence of the parity-dependent disorder-immune chiral symmetry and the resulting thermalization gap by measuring photon statistics, while strong disorder-induced Anderson localization overwhelms such a phenomenon in larger-scale structures. Our results shed new light on the relation among symmetry, disorder, and localization, and may inspire new resources and artificial devices for information processing and quantum control on a photonic chip.

20.
Opt Express ; 27(5): 5982-5989, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876192

RESUMO

Quantum key distribution (QKD), harnessing quantum physics and optoelectronics, may promise unconditionally secure information exchange in theory. Recently, theoretical and experimental advances in measurement-device-independent (MDI)-QKD have successfully closed the physical back door in detection terminals. However, the issues of scalability, stability, cost and loss prevent QKD systems from widespread application in practice. Here, we propose and experimentally demonstrate a solution to build a star-topology quantum access network with an integrated server. By using femtosecond laser direct writing techniques, we construct integrated circuits for all the elements of Bell state analyzer together and are able to integrate 10 such analyzer structures on a single photonic chip. The measured high-visibility Bell state analysis suggests the integrated server as a promising platform for the practical application of MDI-QKD network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA